Name:				
Team member names:				
			Class Period:	
		Date of Experiment:		
		Due [Date of Report:	
Title of Lab:				
Purpose of this lab:				
To determine the				between:
Independent variable:		abbreviation:	unit:	
Dependent variable:		abbreviation:	unit:	
For				
Our math model (with relevant variab	les and appropriate u	inits):		
Written relationships: This tells us that	at			
is pror	portional to / inversely	v proportional to (circle one	.)	
Because				
vhen increases,			increases/decrea	ses (circle one)
Our y-intercept value (with units):	The physical mean	ing of our y-intercept:		
Our slope value (with units):	The physical meaning of our slope:			
The general formula:				
New vocabulary terms and their defin	itions:			
Possible source of error #1:		How error #1 could be av	oided/corrected:	
Possible source of error #2:		How error #2 could be avoided/corrected:		
		l		

Conclusion Outline

Paragraph 1: Introduction				
Introductory Sentence	This will help guide the discussion the conclusion as well as tell the reader what the			
(Restate purpose)	variables are for the lab. It will let the reader know what relationship was being studied.			
Transition Sentence	Now tell the reader that the relationship that was discovered was linear, quadratic, etc			
	Also tell the reader that this relationship tells us that is proportional/inversely			
	proportional to (see template above). This gives a simple explanation for how			
	the variables are related graphically (which is half of the purpose of the lab) before going			
	into the mathematical relationship (which we obtained from the graph).			
Math Model	The math model we discovered was			
	This takes the qualitative "linear relationship" and makes it more quantitative.			
Paragraph 2: Y-Intercept				
Transition Sentence	Now that you have stated the mathematical model, you will explain each part of the			
	equation. Tell the reader that you will now focus on the y-intercept.			
Physical Meaning	Physical meaning of the y-intercept, including your value (with units).			
New Vocabulary	If applicable, state and define the new vocabulary term for the y-intercept.			
Conceptual Explanation	Conceptually, explain if the value you got makes sense.			
Mathematical	Mathematically, explain if the value you got makes sense (how big is it compared to your			
Explanation	largest y-value).			
Expected Value	Explain what we would have expected the y-intercept to be.			
Paragraph 3: Slope				
Transition Sentence	Now tell the reader that you will now focus on the slope.			
Physical Meaning	Physical meaning of the slope, including your value (with units).			
What if	Explain what would happen/what it would physically mean if the slope were larger/smaller.			
New Vocabulary	If applicable, state and define the new vocabulary term for the slope.			
Paragraph 4: General Formula				
Transition Sentence	Tell the reader that, based on the information discussed earlier and on a class consensus,			
	you will show how to get from your math model to the general formula.			
Derive the Formula	Now show that process. You should take a few sentences to explain how to arrive at the			
	final equation. This is especially true if you end up removing parts of the equation as needed			
	if they end up being zero/close to zero.			
New Vocabulary	State and define any remaining vocabulary terms needed to understand the general formula.			
Paragraph 5: Sources of Error/Inaccuracy				
Transition Sentence	Tell the reader that even though you were able to derive the general formula, that your data			
	could have been more accurate or precise.			
Source of Error #1	Explain one possible source of inaccuracy or error. Be specific. You need to describe			
	limitations about this lab (either the procedures or the equipment). Do NOT describe ways			
	that you were not "careful" enough (such as you calculated or graphed something wrong).			
How to Reduce Error #1	Explain how you could reduce that source of error. Be specific. For example, what			
	equipment could you use or what precautions could you take when measuring.			
Source of Error #2	Explain one possible source of inaccuracy or error. Be specific. You need to describe			
	limitations about this lab (either the procedures or the equipment). Do NOT describe ways			
	that you were not "careful" enough (such as you calculated or graphed something wrong).			
How to Reduce Error #2	Explain how you could reduce that source of error. Be specific. For example, what			
	equipment could you use or what precautions could you take when measuring.			
Concluding Sentence	Give some conclusion about how closely your math model matched the general formula and			
	if the experimental errors had a large effect or not.			