Multiple-choice test Block 1: Supplement

Click on the correct answer to each question.
1 The graph represents the motion of a car along a road. What is the car's speed, in m / s ?

A $10 \mathrm{~m} / \mathrm{s}$
B $12 \mathrm{~m} / \mathrm{s}$
C $12.5 \mathrm{~m} / \mathrm{s}$
D $15 \mathrm{~m} / \mathrm{s}$
2 Which graph represents the motion of a body that is decelerating?

Time
A

C

B

D

3 A train is accelerating as it moves away from a station. As it passes a signal, its speed is $5.0 \mathrm{~m} / \mathrm{s}$. Then, 50 s later, its speed has increased to $25.0 \mathrm{~m} / \mathrm{s}$.
What is its average acceleration, in $\mathrm{m} / \mathrm{s}^{2}$?
A $0.4 \mathrm{~m} / \mathrm{s}$
B $0.5 \mathrm{~m} / \mathrm{s}$
C $2.0 \mathrm{~m} / \mathrm{s}$
D $2.5 \mathrm{~m} / \mathrm{s}$
4 A skydiver jumps from an aircraft and falls through the air towards the Earth. Which graph could represent his motion before he opens his parachute?

A

C

B

D

5 An astronaut whose mass is 100 kg on Earth travels to the Moon. The gravitational field strength on the surface of the Moon is $1.6 \mathrm{~N} / \mathrm{kg}$. Which row in the table shows correctly the astronaut's mass and weight on the surface of the Moon?

	Mass/kg	Weight/N
A	0	0
B	100	0
C	100	160
D	160	160

6 The graph shows how the length of a spring changes as the load on it is increased.

What is the extension of the spring, in cm , when the load is 3.5 N ?
A 15 cm
B 25 cm
C 40 cm
D 55 cm
7 Hooke's law describes how the extension of a spring depends on the load on the spring. The law can be written as $F=k x$, where k is the stiffness of the spring.
A student tests four springs by adding a load of 20 N to each one in turn. Her results are shown in the table. Which spring has the greatest value of k ?

Spring	Original length/cm	Final length/cm
A	10	40
B	20	30
C	30	50
D	40	60

8 What force, in N , is needed to give a ball of mass 0.5 kg an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$?
A 0.125 N
B 2.0 N
C 4.5 N
D 8.0 N

9 What is the unit of the impulse of a force?
A N
B Ns
C $\mathrm{kgm} / \mathrm{s}^{2}$
D N/kg
10 A toy truck of mass 0.5 kg is moving with a speed of $2.0 \mathrm{~m} / \mathrm{s}$. A child pushes it with a force of 2.5 N for 2 s , as shown.

What is the truck's momentum, in $\mathrm{kg} \mathrm{m} / \mathrm{s}$, after it has been pushed?
A $1.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
B $4.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C $5.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
D $6.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
11 A force of 5.0 N acts on a beam as shown.

What is the moment of the force about the pivot?
A 3.0 Nm clockwise
B 3.0 Nm anticlockwise
C 4.0 Nm clockwise
D 4.0 Nm anticlockwise

12 A beam is pivoted at its midpoint as shown.

What force must be applied at end X to balance the beam?
A 50 N upwards
B 50 N downwards
C 200 N upwards
D 200 N downwards
13 Which row in the table gives correct examples of scalar and vector quantities?

	Scalar quantity	Vector quantity
A	mass	kinetic energy
B	distance	velocity
C	weight	acceleration
D	force	momentum

14 A stone of mass 3.0 kg is moving with a speed of $4.0 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy, in joules?
A 12 J
B 24 J
C 36 J
D 72 J
15 Most of our energy resources depend on radiation from the Sun. Which of the following energy resources does not depend on solar radiation?
A wind energy
B hydro-electricity
C tidal power
D biomass
16 By what process is energy released in the Sun?
A solar power
B radiation
C nuclear fission
D nuclear fusion

17 The diagram represents the energy transformations that happen in a light bulb each second.

What is the efficiency of the light bulb?
A 15\%
B 30\%
C 100\%
D 170\%
18 A force of 50 N is used to push a box up a slope XY, as shown.

How much work, in J , is done by this force in moving the box from X to Y ?
A 0 J
B 60J
C 80 J
D 100 J
19 A crane lifts a load of bricks of weight 20000 N to a height of 10.0 m in a time of 20 s . Which row in the table shows correctly the energy transferred to the bricks and the power of the crane?

	Energy transferred / J	Power/W
A	2000	100
B	2000	40000
C	200000	1000
D	200000	10000

20 The tank shown contains liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$. (Assume that the Earth's gravitational field strength $g=10 \mathrm{~N} / \mathrm{kg}$).

Atmospheric pressure on the surface of the liquid is $100000 \mathrm{~N} / \mathrm{m}^{2}$. The pressure on the base of the tank is $140000 \mathrm{~N} / \mathrm{m}^{2}$. What is the depth of liquid in the tank, in m ?
A 0.5 m
B 5.0 m
C 15 m
D 50 m

